Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sensors (Basel) ; 22(1)2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1615852

ABSTRACT

Infrared thermographs (IRTs) implemented according to standardized best practices have shown strong potential for detecting elevated body temperatures (EBT), which may be useful in clinical settings and during infectious disease epidemics. However, optimal IRT calibration methods have not been established and the clinical performance of these devices relative to the more common non-contact infrared thermometers (NCITs) remains unclear. In addition to confirming the findings of our preliminary analysis of clinical study results, the primary intent of this study was to compare methods for IRT calibration and identify best practices for assessing the performance of IRTs intended to detect EBT. A key secondary aim was to compare IRT clinical accuracy to that of NCITs. We performed a clinical thermographic imaging study of more than 1000 subjects, acquiring temperature data from several facial locations that, along with reference oral temperatures, were used to calibrate two IRT systems based on seven different regression methods. Oral temperatures imputed from facial data were used to evaluate IRT clinical accuracy based on metrics such as clinical bias (Δcb), repeatability, root-mean-square difference, and sensitivity/specificity. We proposed several calibration approaches designed to account for the non-uniform data density across the temperature range and a constant offset approach tended to show better ability to detect EBT. As in our prior study, inner canthi or full-face maximum temperatures provided the highest clinical accuracy. With an optimal calibration approach, these methods achieved a Δcb between ±0.03 °C with standard deviation (σΔcb) less than 0.3 °C, and sensitivity/specificity between 84% and 94%. Results of forehead-center measurements with NCITs or IRTs indicated reduced performance. An analysis of the complete clinical data set confirms the essential findings of our preliminary evaluation, with minor differences. Our findings provide novel insights into methods and metrics for the clinical accuracy assessment of IRTs. Furthermore, our results indicate that calibration approaches providing the highest clinical accuracy in the 37-38.5 °C range may be most effective for measuring EBT. While device performance depends on many factors, IRTs can provide superior performance to NCITs.


Subject(s)
Body Temperature , Thermography , Calibration , Fever , Humans , Infrared Rays , Thermometers
2.
J Biomed Opt ; 25(9)2020 09.
Article in English | MEDLINE | ID: covidwho-760198

ABSTRACT

SIGNIFICANCE: Infrared thermographs (IRTs) have been used for fever screening during infectious disease epidemics, including severe acute respiratory syndrome, Ebola virus disease, and coronavirus disease 2019 (COVID-19). Although IRTs have significant potential for human body temperature measurement, the literature indicates inconsistent diagnostic performance, possibly due to wide variations in implemented methodology. A standardized method for IRT fever screening was recently published, but there is a lack of clinical data demonstrating its impact on IRT performance. AIM: Perform a clinical study to assess the diagnostic effectiveness of standardized IRT-based fever screening and evaluate the effect of facial measurement location. APPROACH: We performed a clinical study of 596 subjects. Temperatures from 17 facial locations were extracted from thermal images and compared with oral thermometry. Statistical analyses included calculation of receiver operating characteristic (ROC) curves and area under the curve (AUC) values for detection of febrile subjects. RESULTS: Pearson correlation coefficients for IRT-based and reference (oral) temperatures were found to vary strongly with measurement location. Approaches based on maximum temperatures in either inner canthi or full-face regions indicated stronger discrimination ability than maximum forehead temperature (AUC values of 0.95 to 0.97 versus 0.86 to 0.87, respectively) and other specific facial locations. These values are markedly better than the vast majority of results found in prior human studies of IRT-based fever screening. CONCLUSION: Our findings provide clinical confirmation of the utility of consensus approaches for fever screening, including the use of inner canthi temperatures, while also indicating that full-face maximum temperatures may provide an effective alternate approach.


Subject(s)
Body Temperature , Coronavirus Infections/diagnosis , Face/physiology , Fever/diagnosis , Pneumonia, Viral/diagnosis , Thermography/methods , Adolescent , Adult , Aged , Area Under Curve , Betacoronavirus , COVID-19 , Female , Humans , Infrared Rays , Male , Mass Screening/methods , Middle Aged , Pandemics , Practice Guidelines as Topic , ROC Curve , Reproducibility of Results , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL